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Foundations of classical statistical thermodynamics

Outline  

• Dynamical systems (v brief)	



• Thermostats (v brief)	



• Phase space and ensembles	



• Phase Continuity Equation	



• Fluctuation Theorem and corollaries	



• Dissipation Theorem	



• Linear and nonlinear response theory, Green-Kubo relations	



• Relaxation Theorem	



• Derivation of the canonical (Maxwell-Boltzmann) equilibrium distribution 
function	



• Connection with equilibrium Thermodynamics	



• Nonequilibrium Free Energy Relations
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Thomson on reversibility

The instantaneous reversal of the motion of every moving 	


particle of a system causes the system to move backwards	


each particle along its path and at the same speed as before…	


!
W. Thomson (Lord Kelvin) 1874	


(cp J. Loschmidt 1878)
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Maxwell on the Second Law

Hence the Second Law of thermodynamics is continually being 	


violated and that to a considerable extent in any sufficiently small 	


group of molecules belonging to any real body.  As the number of	


molecules in the group is increased, the deviations from the mean	


of the whole become smaller and less frequent; and when the number is increased 
till the group includes a sensible portion of the body, the probability of a 
measurable variation from the mean occurring in a finite number of years becomes 
so small that it may be regarded as practically an impossibility.	


!
J.C. Maxwell, Nature, 17, 278(1878)
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Aside on Clausius’ Inequality

 

dQ
T

≥ 0!∫

“When Clausius is an Equality then dQ/T is a state function and the cycle is 
traversed “quasi-statically”. However when you have a strict inequality either the 
system of interest or the thermal reservoir (or both) are out of equilibrium. In this 
case there is no legitimate meaning for the thermodynamic temperature and the 
inequality is without meaning.

“Thus if a closed system is at some instant in a nonequilibrium macroscopic state, 
the most probable consequence at later instants is a steady increase in the entropy 
of the system. This is the law of increase of entropy  or  second law of 
thermodynamics, discovered by Clausius (1856)....” Landau and Lifshitz, “Statistical 
Physics” second edition Pergamon Press, p28(1968).
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!
!
“There are three things in Prof. Orr’s article (Phil Mag S6 V8 No 46 p509 (1904)) 
which stand out as of particular importance.!
(1) He says in substance, though with great moderation, that all proofs of the 
theorem.. when the integral is taken round an irreversible cycle, are rubbish,” .. “The 
question how a treatise should be written is not so easily answered. ...I do not know 
of a single book which today deserves the title of ‘Treatise on Thermodynamics’ “ E. 
Buckingham Phil Mag S6, v9 p208(1905).!
!
“If a process ...takes place so violently that one can no longer define temperature.. 
then the usual definition of entropy is inapplicable. Of course I completely agree with 
Orr and Bertrand.” Max Planck Phil. Mag. Mag., S6, v49, p167(1905).!
!
“We must leave the question of the proper method for a treatise to the future when 
the difficulties which now beset us may have vanished.” Buckingham Phil Mag S6 
v9, p208(1905).
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Thermostatted Dynamical Systems (Evans & Hoover et. al 1980’s)

Typically we deal with adiabatic Hamiltonian N-particle systems (i=1,N) - W.R. Hamilton 1805-1865)!!!!!!
! !!
and often                                                                                                    .  Whereupon!
!!!!!!
We observe that!!
!
!

 

!qi =
∂H(q,p)

∂p i

!p i = − ∂H(q,p)
∂qi

 

!qi =
p i
m

!p i = − ∂Φ
∂qi

≡ Fi

  
Λad ≡ ∂

∂Γ
i !Γ = 0

 H(Γ) ≡ H(q,p) ≡ H(q1,...qN,p1,...pN ) = K(p)+Φ(q)
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Consider a system described by the time reversible thermostatted equations of motion (Hoover et al):!!!!!!
! !
Example:!!
Sllod  NonEquilibrium Molecular Dynamics algorithm for shear viscosity - is exact for adiabatic flows.!
!!!!
which is equivalent to:!!
!
!
There is no Hamiltonian function that generates adiabatic SLLOD .

 

!qi = p i / m +C i iFe

!p i = Fi +D i iFe −αSipi : Si = 0,1; Si
i
∑ = Nres

 
!!qi =

Fi
m

+ iγδ(t)yi −α(!q i − iγyi )

Example: Thermostatted SLLOD equations for planar Couette flow
(Evans and Morriss (1984))
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t =  0-

vx

  t = 0+

x

(y)vx (y)vx

(y)> = γyu =<vx x

vx x

 

The Sllod equations of motion are equivalent to Newton’s equations for t > 0+, with a linear 
shift applied to the initial x-velocities of the particles.	



Therefore adiabatic Sllod is exact arbitrarily far from equilibrium.	
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Lees-Edwards (1972) periodic boundary conditions for shear flow	


!
!
!
! = y

x

y ux γ

θ

L

L
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How does the internal energy                            change under SLLOD?H0 ≡ K +Φ

 

!Had
0 = !p i i

∂K
∂p i

∑ + !qi i
∂Φ
∂qi

= −iγ∑ pyi i
p i
m

− iγyi iFi

= −γ
pyipxi
m

+ yiFxi∑ ≡ −γPxyV

where Pxy is the xy-element of the pressure tensor.  At low strain rates we expect Newton’s Law (1687) of 
viscosity to hold namely,!!
lim
γ→0
Pxy (γ ) = −ηγ

where     is the so-called shear viscosity.η
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If we add in the thermostatting terms then!

 
!H0 = −γPxyV− 2Kα

If we then choose the thermostat multiplier as

α = −γPxyV / 2K

and the internal energy will be a constant of the motion. This is called a Gaussian ergostat. (Evans and 
Hoover 1982).  These equations of motion can be derived from Gauss’ Principle of Least Constraint (Gauss  
1829). Possible assessment topic. This multiplier could also be chosen to fix the kinetic energy of the 
system - Gaussian isokinetic thermostat.  On average the thermostat multiplier will be positive since 
viscous work is done on the system which is then converted into heat and removed by the thermostat.!!
In a nonequilibrium steady state time averages satisfy the equation:

 

!H0 = −γPxyV− 2Kα = 0

=W+Q = work + heat

All equations of motion are time reversal symmetric - but more on this later!
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The concept of ensembles in statistical mechanics  (Boltzmann 1871, Maxwell 1879)

In a macroscopic thermal system we only control a few state variables: temperature or total energy, pressure 
or total volume, total mass or number of molecules.  To specify the microstate of a system     we need!
               variables! Yet experience tells us that a specification of the few state variables is all we need to 
correctly predict macroscopic properties: specific heats viscosity etc.
O(NA)

 Γ

“I have found it convenient, instead of considering one system of material particles, to consider a large 
number of systems similar to each other in all respects, except the initial circumstances of the motion, which 
are supposed to vary from system to system, the total energy being the same in all.” (Maxwell 1879)
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• 	

 Let            be the total number of ensemble members inside an arbitrary phase space 
volume !
!

                                                          and       	

!
!
the                is the phase space density at position     and time t. Since mass is 
conserved, the only way that the mass in the volume      can change is by flowing 
through the enclosing surface,        (see Figure below).	

!!
!!
Since the volume is arbitrary,!!!!
                                                                          	

!
This is the Phase Continuity Theorem usually erroneously referred to as Liouville’s 
Theorem.!!

 VΓ
M(t)

 Γ
 VΓ

 SΓ

Phase Continuity Theorem (Gibbs 1901)
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M(t) = dΓ f(Γ; t)

VΓ∫  
dM
dt

= dΓ ∂f(Γ; t)
∂tVΓ∫

 f(Γ; t)

  
dM(t)
dt

= − dSΓSΓ∫ f(Γ; t) !Γ(Γ) = dΓ
VΓ∫

∂
∂Γ

i [ !Γf(Γ; t)]

  
∂f(Γ; t)

∂t
= − ∂

∂Γ
i [ !Γf(Γ; t)]
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14                                                             STATISTICAL MECHANICS OF NONEQUILIBRIUM LIQUIDS 

 

 

 

dM

dt
= dr

!"(r, t)

!tV
#  (2.3) 

 

If we equate these two expressions for the rate of change of the total mass we find that since 

the volume V  was arbitrary, 

 

 

 

!"(r, t)

!t
= #$ % "(r, t)u(r,t)[ ]  (2.4) 

 

This is called the mass 

continuity equation and is 

essentially a statement 

that mass is conserved. 

We can write the mass 

continuity equation in an 

alternative form if we use 

the relation between the 

total or streaming 

derivative, and the 

various partial 

derivatives. For an 

arbitrary function of 

position r and time 

 

t , for example a(r, t) , we have 

 

 

 

d

dt
a(r, t) =

!

!t
a(r, t) + u " #a(r,t) (2.5) 

 

If we let a(r, t) ! "(r, t)  in equation (2.5), and combine this with equation (2.4) then the mass 

continuity equation can be written as 

 

 

 

d!(r, t)

dt
= "!(r,t)# $ u(r, t)  (2.6) 

 

In an entirely analogous fashion we can derive an equation of continuity for momentum. Let 

G(t)  be the total momentum of the arbitrary volume V , then the rate of change of momentum 

is given by 

 

 

 

dG

dt
= dr

V
!

" #(r, t)u(r,t)[ ]
"t

 (2.7) 

 

  

Figure 2.1. The change in the mass contained in an arbitrary closed volume 

 

V  can be calculated by integrating the mass flux through the enclosing 

surface 

 

S , 

 

dM dt = ! dS " #u(r, t)$ . 

This diagram is for the analogous mass continuity equation.
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Phase Continuity Theorem (contd)

  
df
dt

= ∂f
∂t

+ !Γi
∂f
∂Γ

= −f ∂
∂Γ

i !Γ

The chain rule gives:

For adiabatic Hamiltonian systems

df
dt

= 0

while for thermostatted Hamiltonian systems (AI      e.g. thermostatted SLLOD) Γ

16

 
df
dt

= −fΛ = +3Nresα(t)f(Γ; t)
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Fluctuation Theorem (Roughly).

The first statement of a Fluctuation Theorem was given by Evans, Cohen & 
Morriss, 1993.  This statement was for isoenergetic nonequilibrium steady 
states.!!
If  ! ! ! is total (extensive) irreversible entropy !!
production rate/      and its time average is:! !       , then!!!!!!!!
Formula is exact if time averages (0,t) begin from the initial phase         , 
sampled from a given initial distribution                  . It is true asymptotically           
, if the time averages are taken over steady state trajectory segments. The 
formula is valid for arbitrary external fields,     .

p(Σ t = A)
p(Σ t = −A)

= exp[At]

Σ t ≡ (1 t) ds
0

t

∫ Σ(s)

� 

kB

� 

Γ(0)

Σ = −βJFeV = dV
V
∫ σ(r) / kB

t→∞

� 

Fe

f(Γ(0),0)
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Evans, Cohen & Morriss, PRL, 71, 2401(1993).

P xy,t

p(P xy, t )

ln
p( P xy,t = A)

p(P xy ,t = −A)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= −βAγVt
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Why are the Fluctuation Theorems important?

• Show how irreversible macroscopic behaviour arises from time reversible dynamics.!
• Generalize the Second Law of Thermodynamics so that it applies to small systems observed for short 

times.!
• Imply the Second Law InEquality .!
• Are valid arbitrarily far from equilibrium regime!
• In the linear regime FTs imply both Green-Kubo relations and the Fluctuation dissipation Theorem.	


• Are valid for stochastic systems (Lebowitz & Spohn, Evans & Searles, Crooks).	


• New FT’s can be derived from the Langevin eqn (Reid et al, 2004).	


• A quantum version has been derived (Mukamel, Monnai & Tasaki), .	


• Apply exactly to transient trajectory segments (Evans & Searles 1994) and asymptotically for steady 

states (Evans et al 1993)..	


• Apply to all types of nonequilibrium system: adiabatic and driven nonequilibrium systems and relaxation 

to equilibrium (Evans, Searles & Mittag).	


• Can be used to derive nonequilibrium expressions for equilibrium free energy differences (Jarzynski 

1997, Crooks).	


• Place (thermodynamic) constraints on the operation of nanomachines.

Ωt ≥ 0, ∀t,N

19
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The Phase Continuity equation is analogous to the mass continuity equation in fluid mechanics.!!
! !!!!
or for thermostatted systems, as a function of time, along a streamline in phase space:!!
! ! !!!
Λ is called the phase space compression factor and for a system in 3 Cartesian dimensions!!!!!
The formal solution is:!!
!
!  !

Λ(Γ) = −3Nresα(Γ)

20

  
∂f(Γ; t)

∂t
= − ∂

∂Γ
i [ !Γf(Γ; t)] ≡ −iLf(Γ; t)

 

df(Γ; t)
dt

= [ ∂
∂t

+ !Γ(Γ) i ∂
∂Γ
]f(Γ; t) = −f(Γ; t)Λ(Γ), ∀Γ, t

f(StΓ; t) = exp[− ds
0

t

∫ Λ(SsΓ)]f(Γ;0)
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More on Thermostats

Deterministic, time reversible, homogeneous thermostats were simultaneously but independently 
proposed by Hoover and Evans in 1982. Later we realised that the equations of motion could be derived 
from Gauss' Principle of Least Constraint (Evans, Hoover, Failor, Moran & Ladd (1983)).!!
The form of the equations of motion is!!
! !!
α can be chosen such that the energy is constant or such that the kinetic energy is constant. In the latter 
case the equilibrium, field free distribution function can be proved to be the isokinetic distribution, !

!
!
In 1984 Nosé showed that if α is determined as the time dependent solution of the equation!!
! !!
then the equilibrium canonical distribution 

f(Γ) ~ exp[−H0(Γ ) / kBT]

 

!qi =
p i
m +Ci (Γ)iFe

!p i = Fi (q) +Di (Γ)iFe − Siα(Γ)p i

f(Γ) ~ δ( pi
2 / 2m

wall
∑ − 3NkBT / 2)exp[−Φ(q) / kBT]

dα
dt

= pi
2 / 2m

wall
∑⎛⎝⎜

⎞
⎠⎟
/ 3NwallkBT / 2( ) −1⎡

⎣
⎢

⎤

⎦
⎥ / τ

2

is preserved by the equations of motion.
21
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Aside:  -  Thermostats and Equilibrium

Consider “µ” thermostats described by the equations of motion:!!
   !!!
where Einstein notation is used,                  ,   is the position of the i-th particle in the δ-direction,       is the 
momentum of the ith particle in the  δ-direction,            and             couple the system with the external field,   !!
At           :!
• all µ-thermostats that violate Gauss Principle do not generate an equilibrium state and, 

!
• among  µ-thermostats that satisfy Gauss's Principle to fix the µ+1 moment of the velocity distribution, only 
the conventional Gaussian isokinetic thermostat (µ=1) possesses an equilibrium state.

 

!qiδ =
piδ
m

+CiδγFeγ

!piδ = Fiδ + DiδγFe γ − α piδ
µ−1piδ

δ,γ = x,y,z
Ciδγ (Γ ) Diδγ (Γ)

piδ
Feγ

Feγ = 0

22
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Time reversibility
Consider an arbitrary phase function B.

  dB(Γ) / dt = !Γi∂B/ ∂Γ ≡ iL(Γ)B(Γ)

The formal solution via infinite order Taylor series is,

(Prove by differentiation.)  Now consider a time reversal mapping

 M
T[B(Γ)] =MT[B(q,p)] ≡ B(q,−p)

The phase variable B at time t can be retraced back to time zero by applying the inverse 
propagator (ie reversing the direction of time).

exp[−iLt]B(t) = exp[−iLt]exp[iLt]B(0) = B(0)

Since                                              we can also return to the origin by applying the time 
reversal mapping but always going forward in time.

 M
TeiLtMTeiLtΓ(0) =MTeiLtMTΓ(t) = e− iLtΓ(t) = Γ(0)

 M
TiL(Γ) = −iL(Γ)MT

Such dynamics is called time reversal symmetric dynamics.
23

 B(S
tΓ) = exp[+iL(Γ)t]B(Γ)
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Thomson on reversibility

The instantaneous reversal of the motion of every moving 	


particle of a system causes the system to move backwards	


each particle along its path and at the same speed as before…	


!
W. Thomson (Lord Kelvin) 1874	


(cp J. Loschmidt 1878)
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The Loschmidt Demon applies !
a time reversal mapping to the end point!
of a trajectory starting at           : 

Γ = (q,p)→Γ∗ = (Stq,−Stp)

Loschmidt Demon

25
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Phase Space and reversibility
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!!!!!!!!!
We know that!!!!!!!!!!!!!!
The dissipation function is in fact a generalised irreversible entropy production - see below.

The Dissipation function is defined as: (Searles & Evans 2000)

27

dsΩ(SsΓ
0

t

∫ ) ≡ ln f(Γ;0)
f(StΓ;0)

⎛
⎝⎜

⎞
⎠⎟
− Λ(SsΓ)ds

0

t

∫

= Ω t t ≡ Ω t

Assumptions :
• Ergodic Consistency
f(Γ;0) ≠ 0⇒
f(StΓ;0) ≠ 0. Loschmidt
• Also f(Γ;0) = f(MT(Γ);0)
• MTStMTStΓ = Γ,  Reversibility
Definition :
• Γ* ≡MTStΓ

p(δVΓ (Γ);0))
p(δVΓ (Γ

*);0))
= f(Γ;0)δVΓ (Γ)
f(Γ*;0)δVΓ (Γ

*)

= f(Γ;0)
f(StΓ;0)

exp − Λ(SsΓ)ds
0

t

∫⎡
⎣⎢

⎤
⎦⎥

= exp[Ω t (Γ)]
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Ergodic Consistency
f(Γ;0) ≠ 0⇒
f(StΓ;0) ≠ 0.

Guarantees that every infinitesmal set of trajectories 
at t=0, has a conjugate set of antitrajectories in the 
set of all occupied initial phases. This in turn 
implies that in the initially occupied phase space, 
almost every trajectory has a conjugate 
antitrajectory - as Loschmidt pointed out!
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Choose!!
! !!!!!!!!!!!!!!!!!
So we have the Transient Fluctuation Theorem (Evans and Searles 1994)!!
! !!!
The derivation is complete. ln

p(Ωt = A)
p(Ωt = −A)

= At

Evans Searles TRANSIENT FLUCTUATION THEOREM

29

δVΓ (Γ) st Ω t (Γ) = A ± δA)

p(δVΓ (Γ);0)
p(δVΓ (Γ

*);0))
= f(Γ;0)δVΓ (Γ)
f(Γ*;0)δVΓ (Γ

*)

= f(Γ;0)
f(StΓ;0)

exp − Λ(SsΓ)ds
0

t

∫⎡
⎣⎢

⎤
⎦⎥

= exp[Ω t (Γ)] = exp[At]
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FT for different ergodically consistent bulk ensembles driven by a dissipative field, Fe 
with conjugate flux J. 

Isokinetic or Nose-Hoover dynamics/isokinetic or canonical ensemble !!!
! !!

Isoenergetic dynamics/microcanonical ensemble!!!
! !    ! or! ! !!

(Note: This second equation is for steady states, the Gallavotti-Cohen form for the FT (1995).)!!!
Isobaric-isothermal dynamics and ensemble.!!!!!!

(Searles & Evans  , J. Chem. Phys.,  113, 3503–3509 (2000))

ln
p(Jt = A)
p(Jt = −A)

= −AtFeβV −JFeV ≡ dH0
ad

dt

ln
p(Jβt = A)
p(Jβ t = −A)

= −AtFeV ln
p(Λt = A)
p(Λ t = −A)

= −At −JFeV ≡ dH0
ad

dt

ln
p(Jt = A)
p(Jt = −A)

= −AtFeβV −JFeV ≡ dI 0
ad

dt

Ωt = Σ t = −βJtVFeIn each of these cases

30



If the equations of motion are isokinetic Sllod

Foundations of classical statistical thermodynamics

 

!qi =
p i
m

+ iγyi

!p i = Fi − iγpyi − αpi

Dissipation function for shear flow in the canonical ensemble

and the initial ensemble is canonical (We will have more to say about the canonical distribution later.)

you can prove that the dissipation function is (to leading order in N) - Assignment 2.

31

 
f(Γ;0) = δ[K(p)− 3Nβ−1 / 2]exp[−βH0(Γ)]

dΓ δ[K(p)− 3Nβ−1 / 2]exp[−βH0(Γ)]∫

 
Ω t (Γ) = −β ds

0

t

∫ Pxy (S
sΓ)γV
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Consequences of the FT

Connection with Linear irreversible thermodynamics

In thermostatted canonical systems where dissipative field is constant, !!
! !!!!!!
So in the weak field limit (for canonical systems) the average dissipation function is equal to the “rate of 
spontaneous entropy production” - as appears in linear irreversible thermodynamics.  Of course the TFT 
applies to the nonlinear regime where linear irreversible thermodynamics does not apply.

Σ = − J FeV / Tsoi
= − J FeV / Tres + O(Fe

4 )

= Ω +O(F
e

4 )

32
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The Integrated Fluctuation Theorem (Ayton, Evans & Searles, 2001).

If            denotes an average over all fluctuations in which the time integrated entropy production is positive, 
then,!

!
!
!
!
!
!
!
gives the ratio of probabilities that the Second Law will be satisfied rather than violated. The ratio becomes 
exponentially large with increased time of violation, t, and with system size (since Ω is extensive).  

... Ω t >0

p(Ωt > 0)
p(Ωt < 0)

⎡

⎣
⎢

⎤

⎦
⎥ = e−Ωt t

Ωt >0

−1
= e−Ωt t

Ωt <0
>1

33



If              denotes an average over all fluctuations in which the time integrated entropy production is positive, 
then,!

!
!
 

!
!
!
!
!
!
If the pathway is quasi-static (i.e. the system is always in equilibrium): !!
The instantaneous dissipation function may be negative.  However its time average cannot be negative.!
Note we can also derive the SLI from the Crooks Equality - later.

Foundations of classical statistical thermodynamics

The Second Law Inequality

... Ω t >0

(Searles & Evans 2004).

Ωt = Ap(Ωt = A)( )dA
−∞

∞

∫
= Ap(Ωt = A)−Ap(Ωt = −A)( )dA

0

∞

∫
= Ap(Ωt = A)(1− e−At )( )dA

0

∞

∫
= Ωt (1− e−Ωt t )

Ωt >0
≥ 0, ∀ t > 0

Ω(t) = 0, ∀t

34

Closer analysis shows that if the system is ergodically consistent, if	


for any A,                 .	



p(Ωt = A) ≠ 0
Ωt > 0
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The NonEquilibrium Partition Identity (Carberry et al 2004).

For thermostatted systems the NonEquilibrium Partition Identity (NPI) was first proved for 
thermostatted dissipative systems by Evans & Morriss (1984). It is derived trivially from the TFT.!!!!!!!!!!!!
NPI is a necessary but not sufficient condition for the TFT.  

exp(−Ωt t) = dA p(Ω t = A)exp(−At)−∞

+∞

∫

= dA p(Ω t = −A)
−∞

+∞

∫

= dA p(Ω t = A)−∞

+∞

∫ = 1

exp(−Ωt t) = 1

35
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36

Half Space Partition Identities

!!!!!!!!
But

exp(−Ω t t) = dA [p(Ω t = A)exp(−At)0

+∞

∫ + p(Ω t = −A)exp(+At)]

= dA p(Ω t = A)0

+∞

∫ [exp(−At)+1] = 1

dA p(Ω t = A)0

+∞

∫ = p+ the probability that dissipation is positive in the interval 0,t. So

dA p(Ω t = A)0

+∞

∫ exp(−At) = p− = exp(−Ω t t Ωt>0
dA p(Ω t = A)0

+∞

∫

= exp(−Ω t t Ωt>0
p+
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!
!
We expect that if the statistical properties of steady state trajectory segments are independent of the particular 
equilibrium phase from which they started (the steady state is ergodic over the initial equilibrium states), we 
can replace the ensemble of steady state trajectories by trajectory segments taken from a single (extremely 
long) steady state trajectory.!!
This gives the Evans-Searles Steady State Fluctuation Theorem

lim
t→∞

Pr(Ω
t

ss = A)
Pr(Ωt

ss = −A)
= exp[At+ O(1)]

= exp[At], since At = O(t1/2 )

Steady State ESFT

lim
t→∞

Pr(Ω
t

ss = A)
Pr(Ωt

ss = −A)
= exp[At]
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38

For thermostatted systems the asymptotic Steady State NonEquilibrium Partition Identity (SSNPI) !!!!!!!!!!!!

lim
t→∞

exp(−Ω t t) ss
= lim

t→∞
dA pss(Ω t = A)exp(−At)−∞

+∞

∫

= dA pss(Ω t = −A)
−∞

+∞

∫

= dA pss(Ω t = A)−∞

+∞

∫ = 1

The Steady State NonEquilibrium Partition Identity (Petersen et al 2014).

We can also prove it from the ordinary NPI.!!!!!!!!!!!!

exp(−Ω0,t0
t0 ) = 1, exp(−Ω0,t0+t

(t0 + t)) = 1

= lim
t0→∞

lim
t→∞

exp(−Ω0,t0
t0 ) exp(−Ω t0 ,t0+t

t)

= lim
t0→∞

exp(−Ω t0 ,t0+t
t) = exp(−Ω t t) ss

= 1



Realising that         , is just a dummy variable

Foundations of classical statistical thermodynamics

The Dissipation Theorem (Evans et.al. 2008)

From the streaming version of the Phase Continuity equation

Then from the definition of the dissipation function

Substituting gives
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 f(S
tΓ; t) = e

− ds
0

t

∫ Λ(SsΓ)
f(Γ;0)

 f(Γ;0) = f(S
tΓ;0)e

ds
0

t

∫ [Ω(s)+Λ(s)]
Emphasise GC≠ES

 f(S
tΓ; t) = e

ds
0

t

∫ Ω(SsΓ)
f(StΓ;0),∀Γ, t

 StΓ

 

f(Γ; t) = e
ds
0

t

∫ Ω(Ss−tΓ)
f(Γ;0)

= e
− dτ

0

− t

∫ Ω(Γ(τ))
f(Γ;0)



Foundations of classical statistical thermodynamics

40

The Definition of an Equilibrium 
System

Since,                                                  we define an equilibrium system as any 	


!
system in which                                                    . Since 

 f(Γ; t) = e
− dτ

0

− t

∫ Ω(SτΓ)
f(Γ;0)

 
∂f(Γ; t)

∂t
= Ω(S− tΓ)f(Γ; t)

 

∂feq (Γ; t)
∂t

= Ωeq (S
− tΓ)feq (Γ; t) = 0

 Ω eq (S
t
Γ) = 0, t > 0,Γ ∈ D ⇔ Ωeq,t = 0

Ω(StΓ) = 0, t > 0,Γ∈D
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An aside on normalisation

The distribution function is normalized. This is in spite of the fact that 
from the strict Second Law Inequality:	


!
!
!
!
In nonequilibrium steady states the distribution collapses towards a 
strange attractor that covers almost all of phase space.

From the nonequilibrium partition identity:
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exp(−Ω t t) = dΓ∫ exp[− ds

0

t

∫ Ω(SsΓ)]f(Γ;0) = 1, ∀t

 
⇒ dΓ∫ exp[− ds

0

− t

∫ Ω(SsΓ)]f(Γ;0) = dΓ∫ f(Γ; t) = 1, ∀t

 
dΓ∫ ds

0

t

∫ Ω(SsΓ)]f(Γ;0) = Ω t ≥1, ∀t



lim
Fe→0

B(t) = B(0) −βVFe ds
0

t

∫ J(0)B(s) Fe=0

B(t) = B(0) −βVFe ds
0

t

∫ J(0)B(s) Fe

Foundations of classical statistical thermodynamics

The Dissipation Theorem - cont.

Evans et al. J Chem Phys,, 128, 014504, (2008)

This is an exceedingly general form of the Transient Time Correlation Function 
expression for the nonlinear response (Evans &Morriss 1984). If the initial distribution is 
preserved by the field free dynamics,

that can be linearized to give the Green-Kubo (1957) expression for the limiting 
linear response,
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 B(t) = dΓ B(Γ∫ )e
− dτ

0

− t

∫ Ω(SτΓ)
f(Γ;0)

 

d B(t) / dt = dΓ B(Γ∫ )Ω(S− tΓ)f(Γ; t)

= dΓ B(StΓ∫ )Ω(Γ)f(Γ;0)

 
B(t) = B(0) f(Γ,0) + ds

0

t

∫ Ω(0)B(s) Fe ,f (Γ,0)

Define T-mixing	


stationarity at long 
times
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lim
t→∞

B(t) − B(0) f(Γ,0) = ds
0

∞

∫ Ω(0)B(s) Fe ,f (Γ,0) = ℜ

The Definition of T-mixing systems

All T-mixing systems become time stationary at long times. They must either come 
to equilibrium or generate nonequilibrium steady states. There are no other 
possibilities.	


!
Note: T-mixing systems can have no constants of the motion otherwise the RH 
integral would diverge violating the T-mixing assumption. If the dynamics has 
constants of the motion fix them with delta functions. The remaining subspace can 
then be T-mixing.



Consider a field free dynamics with a subset of thermostatted particles	


!

Foundations of classical statistical thermodynamics

The Equilibrium Relaxation Theorem  
(Evans et.al. 2009)

with

and the momentum of the thermostatted particles sums to zero. This 
dynamics implies that when 	


!

There is no dissipation:
And from the dissipation theorem this distribution is preserved by the 
dynamics.

 

!qi =
p i
mi

!p i = Fi (q)− Si(αp i + γ th )
Kth ≡ Si

pi
2
i

2mii=1

N

∑ = cons

f(Γ,0) ≡ fC(Γ,0) =
δ(Kth −K0 )δ(p th )exp[−β thH0 (Γ)]
dΓ δ(Kth −K0 )∫∫ δ(p th )exp[−β thH0 (Γ)]

Kth = (3Nth − 4)β th
−1 ≡ K0

ΩC(Γ) = 0, ∀Γ
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The Relaxation Theorem - cont.

From the definition of dissipation integral,!
!

From the dynamics!
!

So if  (this is called an equipartition relation)!
!

there is no dissipation anywhere in phase space!
!
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Ω t (Γ) = β th[H0(S

tΓ)−H0(Γ)]+ ds
0

t

∫ (3Nth − 4)α(s)

 
β th[H0(S

tΓ)−H0(Γ)] = −2Kthβ th ds
0

t

∫ α(s)

Kth =
(3Nth − 4)β th

−1

2
≡ (3Nth − 4)kBTth

2

 Ω t (Γ) = 0,∀Γ, t.
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Consider a deviation from the canonical distribution

For this distribution the dissipation function is

Unless g is a constant of the motion, the dissipation theorem implies this 
distribution function is not preserved.
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f(Γ;0) ≡ δ(Kth −K0 )δ(p th )exp[−β thH0(Γ)− γg(Γ)]
dΓ∫ δ(Kth −K0 )δ(p th )exp[−β thH0(Γ)− γg(Γ)]

 Ω t (Γ) = Ω t (Γ)t = γ[g(StΓ)− g(Γ)] ≡ γΔg(Γ, t)

f(Γ; t) = exp[−γΔg(Γ;−t)]f(Γ;0)

We assume the system is T-mixing (i.e. infinite time integrals transient time 
correlation functions of zero mean phase functions converge.) This means that 
g cannot be a constant of the motion. Also the system must therefore be 
ergodic since if it were not, we could construct transient time correlation 
functions whose integrals diverged. T-mixing systems are ergodic and a time 
independent, dissipationless distribution is unique and is called an equilibrium 
canonical distribution function. If g≠0, f((t) cannot be constant.
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Further, the dissipation function satisfies the Second Law Inequality ,	



This inequality is somewhat analogous to the Boltzmann H-theorem.	


!
Thus if the initial distribution differs from the canonical distribution there 
will always be dissipation and on average this dissipation is positive.  This 
remarkable result is true for arbitrary g - provided it is an even function of 
the momenta.	


!
Using the Dissipation Theorem and the Second Law Inequality we see that:
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γ Δg(Γ; t) f (Γ;0) = A(1− e−A )p(γΔg(Γ; t) = A)dA
0

∞

∫

> 0, ∀t, f(Γ;0),g(Γ) ≠ 0

  
g(t) f (Γ;0) − g(0) f(Γ;0) = γ ds !g(0)g(s) f(Γ;0)0

t

∫ > 0, ∀t, f(Γ;0),g(Γ) ≠ 0
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We assume that the system is T-mixing i.e. at sufficiently long time there is a 
decay of correlations and infinite time integrals of the dissipation at t=0 
converge:

where we have used the fact that g is an even function of the momenta and 
hence                       showing that the last term on the first line is zero.	


!
!
!
So in the long time limit there is no dissipation and the system must be relaxing 
towards its unique equilibrium state. 	


!
This completes the proof of the Relaxation Theorem.

 

g(t) f (Γ ,0) = g(0) f(Γ ,0) + γ ds
0

tc∫ !g(0)g(s) f(Γ ,0) + γ ds
tc

t

∫ !g(0) f(Γ ,0) g(s) f(Γ ,0)

= g(0) f(Γ ,0) + γ ds
0

tc∫ !g(0)g(s) f(Γ ,0)
= g(tc ) f (Γ ,0)

 
!g(0) f(Γ ,0) = 0

lim
t→∞

d
dt
g(t) f (Γ ,0) = 0

48



A(T = Tth ,N,V) = Q(Tth ,N,V)

≡ −kBTth ln dΓ∫∫ δ(Kth −K0 )δ(p th )exp[−β thH0 (Γ)]⎡
⎣

⎤
⎦

H0 = Q − Tth
∂Q
∂Tth

Foundations of classical statistical thermodynamics

Connection with thermodynamics
We postulate that

From classical thermodynamics U = A − T ∂A
∂T

Whereas if we differentiate Q with respect to  Tth,

Noting that when T = Tth = 0, that A(0) = U(0) = <H0(0)> = Q(0), we 
observe that A and Q satisfy the same differential equation with the same 
initial condition, and hence our postulate is proven.
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Equilibrium Helmholtz free energy differences can be computed nonequilibrium thermodynamic path 
integrals. For nonequilibrium isothermal pathways between two equilibrium states!!!!!!
implies,!!!!
NB !                   is the difference in Helmholtz free energies, and if !        then JE  =  KI!
!

pF (ΔW = B)
pR (ΔW = −B)

= exp[−β(ΔΑ− B)]

NonEquilibrium Free Energy Relations  

Jarzynski Equality (1997).

exp[−βΔW] F = exp[−βΔΑF ]

f(Γ;0) ∼ exp[−βH1(Γ)]→ f(Γ; t) ∼ exp[−βH2(Γ)]

βΔW(t) ≡ β[H2 (t) − H1(0)]− dsΛ(s)
0

t

∫

Crooks Equality (1999).

ΔA = A2 −A1 ΔA = 0

50
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Evans, Mol. Phys., 20, 1551(2003)

 H(Γ)= (1− λ)H1(Γ)+ λH2 (Γ)

λ(t ) 1

 
!WF (t)

ΔWF = B(t)

ΔWR = −B(t)

 dΓ1(0)

 dΓ1(t)

 dΓ
*
1(t) ≡ dΓ2

* (0)

 dΓ2
* (t ) = dΓ*

1(0)

τ

P1→2 (ΔW(Γ1) = B)
P2→1(ΔW(Γ

2

* ) = −B)
= exp[−β((A2 − A1) − B)] ⇒ exp[−βΔW F = exp[−βΔA]

Crooks-Jarzynski Schematic
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Jarzynski Equality proof:

Crooks proof:

systems are deterministic and canonical
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exp[−βΔW(Γ1)] 1→2 = dΓ1∫ f1(Γ1;0)exp[−β[H2(S
tΓ1)−H1(Γ1)]+ dsΛ(SsΓ)

0

t

∫ ]

= dΓ1∫ f1(Γ1;0)
f2 (Γ 2;0)dΓ 2Z2
f1(Γ1;0)dΓ1Z1

, NB Γ2 ≡ S
tΓ1

= Z2
Z1

dΓ 2∫ f2 (Γ 2;0) = exp[−β(A2 −A1)]

P1→2 (ΔW(Γ1) = B)
P2→1(ΔW(Γ 2

* ) = −B)
=
feq,1(Γ1;0)dΓ1
feq,2 (Γ 2

* ;0)dΓ 2
*

= exp[βΔWF(Γ1 )]
Z2
Z1

= exp[β(B− (A2 −A1))]
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Proof of generalized Jarzynski Equality.

 

exp[ΔXτ (Γ)] ≡
Pr1,eq (Γ;δΓ0 )Z(λ1)
Pr2,eq (S

τΓ;δΓτ )Z(λ2 )

=
f1,eq (Γ)δΓZ(λ1)
f2,eq (S

τΓ)δΓZ(λ2 )

For any ensemble we define a generalized “work” function as:

We observe that the modulus of the Jacobian gives the volume ratio:

 

∂SτΓ
∂Γ

= δSτΓ
δΓ

= f1(Γ0;0)
f1(S

τΓ;τ)
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We now compute the expectation value of the generalized work.

If the ensembles are canonical and if the systems are in contact with heat 
reservoirs at the same temperature

 

exp[−ΔXτ (Γ)] = dΓ0f1(Γ)∫
f2 (S

τΓ)δSτΓ Z(λ2 )
f1(Γ)δΓ Z(λ1)

= Z(λ2 )
Z(λ1)

dSτΓf2 (S
τΓ)∫ = Z(λ2 )

Z(λ1)

 

⇒ΔXτ (Γ) = β(H2(S
τΓ)−H1(Γ))−βΔQτ (Γ)

= βΔWτ (Γ) QED

 

exp[−ΔXτ (Γ)] 1,eq = dΓ f1,eq (Γ)∫
f2,eq (S

τΓτ )δS
τΓ Z(λ2 )

f1,eq (Γ)δΓ Z(λ1)

= Z(λ2 )
Z(λ1)

dSτΓ f2,eq (S
τΓ)∫ = Z(λ2 )

Z(λ1)
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Further comments on thermostats

Tth  is the so-called kinetic temperature of the thermostat. If the thermostat 
has a comparable number of degrees of freedom to the system of interest, 
the thermostat like the system of interest, may be far from equilibrium.  
Thus the thermodynamic temperature would be undefined. However the 
Fluctuation and Dissipation Theorems remain valid!  	


!
In a thought experiment we can move the thermostat arbitrarily far from the 
system of interest and simultaneously greatly increase the number of 
degrees of freedom in the thermostat.  In the limit, the thermostat can be 
viewed as being in thermodynamic equilibrium.  	


!
If the thermostat is small the theorems are still valid. The 
“temperature” is always the equilibrium thermodynamic temperature 
the whole system would relax to, if it was allowed to. This is the 
equilibrium temperature of the underlying equilibrium state.
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Φtrap (q,t) =

1
2
kiq1

2 (t),t ≤ 0

1
2
k fq1

2 (t),t > 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

Computer simulation illustration 
Capture in an harmonic optical trap 

located in a viscoelastic fluid

 

qi = pi /m

pi = FI,i +δ i,1FE ,i −αSipi

α = (TK −T
T

) /Q is the external force due to the optical trapFE,i

Ωt (Γ) = ln
exp[−βH (Γ)− DCNTQα (0)

2 / 2]
exp[−βH (StΓ)− DCNTQα (t)

2 / 2]
exp[− ds

0

t

∫ Λ(s)
⎡

⎣
⎢

⎤

⎦
⎥

= ds
0

t

∫ β !H (SsΓ)+ DCNTQ !α (s)α (s)− Λ(s)⎡⎣ ⎤⎦

= β ds
0

t

∫ (ki − k f )q1(s) i !q1(s)⎡⎣ ⎤⎦ = β(ki − k f )(q1
2 (t)− q1

2 (0))
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Tests of the Second Law Inequality

Note that while the integral of the ensemble averaged dissipation 
oscillates with time, it is always positive in accord with the second law 
inequality.
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Tests of the Dissipation and Relaxation Theorems
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Plot of the difference in the average of the directly averaged dissipation and that 
predicted by the Dissipation Theorem(red) and the sum of the standard errors of the 
two functions (blue) against time. Note that this system must be T-mixing since the 
ensemble averaged dissipation goes to zero at long times implying that it is relaxing 
towards the stationary equilibrium state.
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Tests of the Nonequilibrium Partition Identity
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These numerical tests are from a book chapter:”Fluctuation Relations and the Foundations of Statistical 
Thermodynamics: A Deterministic Approach and Numerical Demonstration”, by J C Reid, S R Williams, D J 
Searles, L Rondoni and D J Evans, in  Nonequilibrium Statistical Mechanics of small systems: Fluctuation 
Relations and beyond, First edition. Editors R Klages, W Just and C Jarzynski. (2013) Wiley VCH. 


